Xylem Vessel Diameter Affects the Compartmentalization of the Vascular Pathogen Phaeomoniella chlamydospora in Grapevine
نویسندگان
چکیده
Fungal wilt diseases are a threat to global food safety. Previous studies in perennial crops showed that xylem vessel diameter affects disease susceptibility. We tested the hypothesis that xylem vessel diameter impacts occlusion processes and pathogen compartmentalization in Vitis vinifera L. We studied the interaction between four grape commercial cultivars with the vascular wilt pathogen Phaeomoniella chlamydospora. We used qPCR and wood necrotic lesion length to measure fungal colonization coupled with histological studies to assess differences in xylem morphology, pathogen compartmentalization, and fungal colonization strategy. We provided evidence that grape cultivar with wide xylem vessel diameter showed increased susceptibility to P. chlamydospora. The host response to pathogen included vessel occlusion with tyloses and gels, deposition of non-structural phenolic compounds and suberin in vessel walls and depletion of starch in parenchyma cells. Pathogen compartmentalization was less efficient in wide xylem vessels than in narrow diameter vessels. Large vessels displayed higher number of tyloses and gel pockets, which provided substrate for P. chlamydospora growth and routes to escape occluded vessels. We discuss in which capacity xylem vessel diameter is a key determinant of the compartmentalization process and in turn grape cultivar resistance to disease caused by P. chlamydospora.
منابع مشابه
Draft Genome Sequence of Phaeomoniella chlamydospora Strain RR-HG1, a Grapevine Trunk Disease (Esca)-Related Member of the Ascomycota
The Ascomycota species Phaeomoniella chlamydospora, in concert with other fungi, is a causal agent for grapevine trunk diseases. Here, we present the first draft of the P. chlamydospora genome sequence, which comprises 355 scaffolds, with a total length of 26.59 Mb and 7,279 predicted protein-coding genes.
متن کاملVariations in Early Response of Grapevine Wood Depending on Wound and Inoculation Combinations with Phaeoacremonium aleophilum and Phaeomoniella chlamydospora
Defense mechanisms in woody tissue are poorly understood, especially in vine colonized by trunk pathogens. However, several investigations suggest that molecular mechanisms in the central tissue of Vitis vinifera L. may be involved in trunk-defense reactions. In this work, the perception of Phaeoacremonium aleophilum and Phaeomoniella chlamydospora alone or together were investigated in cutting...
متن کاملDiffering Alterations of Two Esca Associated Fungi, Phaeoacremonium aleophilum and Phaeomoniella chlamydospora on Transcriptomic Level, to Co-Cultured Vitis vinifera L. calli
The filamentous fungi Phaeoacremonium aleophilum (P.al, Teleomorph: Togninia minima) and Phaeomoniella chlamydospora (P.ch) are believed to be causal agents of wood symptoms associated with the Esca associated young vine decline. The occurrence of these diseases is dramatically increasing in vineyards all over the world whereas efficient therapeutic strategies are lacking. Both fungi occupy the...
متن کاملDevelopment of an isolate-specific marker for tracking Phaeomoniella chlamydospora infection in grapevines.
Petri disease causes decline of grapevines worldwide. The grapevine endophyte Phaeomoniella chlamydospora is the most important fungal pathogen associated with this disease. Epidemiological studies of this pathogen have been hampered by its common occurrence in the internal tissue of apparently healthy vines. Development of a molecular marker for a single strain would overcome this limitation a...
متن کاملCan vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine
This review illuminates key findings in our understanding of grapevine xylem resistance to fungal vascular wilt diseases. Grapevine (Vitis spp.) vascular diseases such as esca, botryosphaeria dieback, and eutypa dieback, are caused by a set of taxonomically unrelated ascomycete fungi. Fungal colonization of the vascular system leads to a decline of the plant host because of a loss of the xylem ...
متن کامل